જો $A = \left[ {\begin{array}{*{20}{c}}
2&b&1 \\
b&{{b^2} + 1}&b \\
1&b&2
\end{array}} \right]$ કે જ્યાં $b > 0$. તો $\frac{{\det \left( A \right)}}{b}$ ની ન્યૂનતમ કિમંત મેળવો.
$2\sqrt 3$
$-2\sqrt 3$
$-\sqrt 3$
$\sqrt 3$
ધારો કે $A_1, A_2, A_3$ એ, સમાન સામાન્ય તફાવત $d$ વાળી ત્રણ સમાંતર શ્રેણીઓ છે, જેના પ્રથમ પદો અનુક્રમે $A , A +1, A +2$ છે. ધારો કે $A _1, A _2, A _3$ ના $7$મા, $9$મા, $17$મા પદો અનુક્રમે $a, b, c$ છે, જ્યાં $\left|\begin{array}{ccc}a & 7 & 1 \\ 2 b & 17 & 1 \\ c & 17 & 1\end{array}\right|+70=0.$ જો $a=29$ હોય તો, જેનું પ્રથમ પદ $c-a-b$ હોય અને સામાન્ય તફાવત $\frac{d}{12}$ હોય તેવી સમાંતર શ્રેણીના પ્રથમ $20$ પદોનો સરવાળો $...........$ છે.
સમીકરણની સંહતિ ${x_1} + 2{x_2} + 3{x_3} = a2{x_1} + 3{x_2} + {x_3} = $ $b3{x_1} + {x_2} + 2{x_3} = c$ ને . . . ઉકેલ છે.
જો ${\Delta _1} = \left| {\begin{array}{*{20}{c}}
x&{\sin \,\theta }&{\cos \,\theta } \\
{\sin \,\theta }&{ - x}&1 \\
{\cos \,\theta }&1&x
\end{array}} \right|$ અને ${\Delta _1} = \left| {\begin{array}{*{20}{c}}
x&{\sin \,2\theta }&{\cos \,\,2\theta } \\
{\sin \,2\theta }&{ - x}&1 \\
{\cos \,\,2\theta }&1&x
\end{array}} \right|$, $x \ne 0$ ;તો દરેક $\theta \in \left( {0,\frac{\pi }{2}} \right)$ માટે . . . .
$\left| {\,\begin{array}{*{20}{c}}{1 + i}&{1 - i}&i\\{1 - i}&i&{1 + i}\\i&{1 + i}&{1 - i}\end{array}\,} \right| = $
જો $a$, $b$, $c$, $d$, $e$, $f$ એ સમગુણોતર શ્રેણીમાં હોય તો $\left| {\begin{array}{*{20}{c}}
{{a^2}}&{{d^2}}&x \\
{{b^2}}&{{e^2}}&y \\
{{c^2}}&{{f^2}}&z
\end{array}} \right|$ એ . . . . પર આધારિત હોય.